Invariance of the parity conjecture for $p$-Selmer groups of elliptic curves in a $D_{2p^{n}}$-extension
نویسندگان
چکیده
منابع مشابه
On Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملSELMER GROUPS FOR ELLIPTIC CURVES IN Zdl -EXTENSIONS OF FUNCTION FIELDS OF CHAR p
Let F be a global field of characteristic p > 0, F/F a Galois extension with Gal(F/F ) ≃ Z l (for some prime l 6= p) and E/F a non-isotrivial elliptic curve. We study the behaviour of Selmer groups SelE(L)r (r any prime) as L varies through the subextensions of F via appropriate versions of Mazur’s Control Theorem. With mild hypotheses on SelE(F )r (essentially a consequence of the Birch and Sw...
متن کاملAverage Size of 2-selmer Groups of Elliptic Curves, I
In this paper, we study a class of elliptic curves over Q with Qtorsion group Z2×Z2, and prove that the average order of the 2-Selmer groups is bounded.
متن کاملSelmer Groups of Quadratic Twists of Elliptic Curves
(1.1) E : y + a1xy + a3y = x + a2x + a4x+ a6 where a1, a2, a3, a4, a6 ∈ Z. Let N(E) denote the conductor of E, j(E) the j-invariant of E, and L(E, s) = ∑∞ n=1 a(n)n −s the Hasse-Weil L-function of E. If E is modular, then let FE(z) = ∑∞ n=1 aE(n)q n ∈ S2(N(E), χ1) be the associated weight 2 cusp form. Here χ1 denotes the trivial Dirichlet character. Throughout, D will denote a square-free integ...
متن کامل2-selmer Groups of Quadratic Twists of Elliptic Curves
In this paper we investigate families of quadratic twists of elliptic curves. Addressing a speculation of Ono, we identify a large class of elliptic curves for which the parities of the “algebraic parts” of the central values L(E/Q, 1), as d varies, have essentially the same multiplicative structure as the coefficients ad of L(E/Q, s). We achieve this by controlling the 2-Selmer rank (à la Mazu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin de la Société mathématique de France
سال: 2011
ISSN: 0037-9484,2102-622X
DOI: 10.24033/bsmf.2620